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the DOS of the Holstein t-J model [3], to the dielectric
constants of Si quantum dots [4], to linear scaling algo-Chebyshev polynomial approximations are an efficient and nu-

merically stable way to calculate properties of the very large Hamil- rithms for tight-binding molecular dynamics [5], to projec-
tonians important in computational condensed matter physics. The tion methods for the electronic structure problem [6], and
present paper derives an optimal kernel polynomial which enforces to provide alternatives to path integral methods for statisti-
positivity of density of states and spectral estimates, achieves the

cal mechanics [7]. Compared with other methods, the KPMbest energy resolution, and preserves normalization. This kernel
is easy to implement, interpret, and manipulate. Unlikepolynomial method (KPM) is demonstrated for electronic structure

and dynamic magnetic susceptibility calculations. For tight binding competing Lanczos recursion methods (LRM), the KPM
Hamiltonians of Si, we show how to achieve high precision and avoids accumulation of numerical roundoff errors even for
rapid convergence of the cohesive energy and vacancy formation large numbers of MVMs.
energy by careful attention to the order of approximation. For disor-

In view of these recent applications to condensed matterdered XXZ-magnets, we show that the KPM provides a simpler
physics and the prospect for expanded use in the future, itand more reliable procedure for calculating spectral functions than

Lanczos recursion methods. Polynomial approximations to Fermi is important to optimize the KPM. Chebyshev polynomial
projection operators are also proposed. Q 1996 Academic Press, Inc. approximations are isomorphic to truncated Fourier series.

Abrupt truncation of such series will result in unwanted
Gibbs oscillations at jump discontinuities in the DOS [8]

I. INTRODUCTION and nonuniform convergence. To avoid the Gibbs phenom-
enon, the series must be truncated smoothly using an ap-In a recent paper [1], we proposed a kernel polynomial
propriate damping factor. Each damping factor corre-method (KPM) to estimate properties of very large Hamil-
sponds to a specific kernel polynomial, which determinestonian matrices. The DOS (density of states) is approxi-
the energy resolution, the positivity, the bias of the DOSmated by an expansion in Chebyshev polynomials, using
or spectral estimate, and the unwanted ‘‘leakage’’ of infor-Chebyshev moments calculated by Hamiltonian matrix-on-
mation from one energy to another. All of the applicationsvector multiplications (MVM) according to the polynomial
of Chebyshev polynomial approximations to condensedrecurrence relation. The resulting estimate for a DOS is a
matter physics so far [1–7] have used various nonoptimalconvolution of a broadening function, or kernel, with the
kernels. These do not minimize the Gibbs phenomenon,true DOS. The energy resolution is inversely proportional
produce positive DOS estimates, or achieve the best possi-to the number of moments calculated. For a chosen energy
ble energy resolution.resolution and statistical accuracy, the computer work and

In this paper we point out that an optimal kernel polyno-memory required for sparse Hamiltonians can scale lin-
mial for DOS and spectral applications was proposed yearsearly in the number of states. A similar polynomial method
ago in the mathematics literature on uniform approxima-has been proposed independently [2].
tion by polynomials [9–11]. However, the original deriva-The KPM is applicable to diverse problems in computa-
tion assumed specific continuity properties of the functiontional condensed matter physics. In [1], the KPM was dem-
being approximated, properties not obeyed by DOS, andonstrated for the DOS and thermodynamic functions of
spectral functions which are sums of delta functions forHeisenberg antiferromagnets with the number of states as
finite systems. Only cumulative distributions satisfy suchlarge as 227. Similar methods have already been applied to
requirements. Therefore, we propose alternative criteria
for this choice of kernel which do not depend on continuity
properties. Using representative condensed matter physics‡ LA-UR-95-357.
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tasks, we compare the empirical performance of this opti- E1

21

1

Ï1 2 x2
Tm(x)Tn(x) dx 5

f
2

dm,nhm, n $ 1j,
(4)

mal kernel to other kernels in the recent physics and ap-
plied mathematics literature. For the tight binding elec-

fhm 5 n 5 0j.tronic structure of Si, we demonstrate that rapid
convergence and high precision can be obtained for the co-

This expansion may be reexpressed in terms of trigonomet-hesive energy and vacancy formation energy provided care
ric functions using x 5 cos(f) and Tm(x) 5 cos(mf), sois taken in the order of the approximations. For disordered
that Eq. (2) is analogous to a Fourier expansion. The Cheb-XXZ-magnets, we demonstrate that the KPM provides a
yshev polynomial moments of the DOS are em ; e1

21more reliable method for calculating spectral functions than
Tm(x)D(x) dx. Reference [1] discusses efficient methodsLRM [12–15]. We also propose a polynomial approxima-
for calculating or estimating the em using MVMs and thetion to a Fermi projection operator, and we demonstrate
polynomial recurrence relations. As Lanczos observedthat another kernel [16] more effectively projects states
[17], the accumulation of roundoff error in Chebyshevabove the Fermi energy to zero. Throughout, we compare
methods is negligible even for huge numbers of moments.results of the KPM with other calculational methods.

In this paper, we presume that a finite number of mo-Section II reviews the KPM introduced in [1], Section
ments, M, are given, and we focus on how best to useIII derives an optimal kernel for DOS and spectral applica-
them. Abrupt truncation of Eq. (2) would result in un-tions, Section IV applies the KPM to the tight binding
wanted Gibbs oscillations. The KPM considers insteadelectronic structure of Si, Section V applies the KPM to
smooth truncations of the formthe dynamical magnetic susceptibility of disordered XXZ-

magnets including a comparison with Lanczos recursion
methods (LRM), Section VI applies the KPM to Fermi

DK(x) 5
1

fÏ1 2 x2 Fe0g0 1 2 OM
m51

emgmTm(x)G . (5)
projection operators, and Section VII concludes.

The gm are Gibbs damping factors which depend impli-II. THE KERNEL POLYNOMIAL METHOD
citly on M. The relation of this estimate to the true

We begin with a brief review of the KPM introduced in DOS is
[1]. Consider the calculation of the DOS of an N 3 N
Hamiltonian H, defined as

DK(x) 5 E1

21
K(x, xo)D(xo) dxo , (6)

D(«) 5
1
N ON

n51
d(« 2 «n), (1)

where the kernel polynomial is

where «n are eigenenergies. The first step is to put lower,
K(x, xo) 5

1

fÏ1 2 x2 Fg0 1 2 OM
m51

gmTm(x)Tm(xo)G . (7)
«l , and upper, «u , bounds on the energies in the DOS. A
scaled Hamiltonian matrix, X, is defined by H 5 aX 1 b,
where a ; («u 2 «l)/2 and b ; («u 1 «l)/2. Eigenvalues Generally, we define the kernel polynomial approximation
of X satisfy 21 # xn # 11. The scaled DOS can be repre- to any distribution F(x) defined on 21 # x # as
sented by a polynomial expansion,

FK(x) ; E1

21
K(x, xo)F(xo) dxo . (8)

D(x) 5
1
N ON

n51
d(x 2 xn)

(2)
Such kernel polynomial approximations become convo-

lutions if they are reexpressed in f 5 arc cos(x) so that5
1

fÏ1 2 x2 Fe0 1 2 Oy
m51

emTm(x)G .
0 # f # f. The corresponding distribution in f is F̃(f)
; F(x) sin(f). This domain is extended to 0 # f # 2f

The Tm(x) are Chebyshev polynomials of the first kind by invoking f-antiperiodic boundary conditions, F̃(2f 2
defined by recurrence relations, f) 5 6F̃(f). Define the f-antiperiodic function

To(x) 5 1, T1(x) 5 x,
(3) dK(f) ; 1

2f Fg0 1 2 ON
m51

gm cos(mf)G . (9)
Tm11(x) 5 2xTm(x) 2 Tm21(x).

They are orthogonal satisfying This should be regarded as a f-antiperiodic polynomial
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approximation to a Dirac delta function. It is normalized The first two criteria for our optimal kernel are equiva-
lent to the requirement that dK(f) must be a polynomialto ef

2f dK(f) df 5 g0 so that we choose g0 5 1. It is peaked
at f 5 2fn, where n is integer. We shall choose gm for of degree M and that it must be positive definite. These

can be met uniquely by the representationm ? 1 such that the width of this peak is Df Y 1/M. Then
Eq. (8) is equivalent to

dK(f) 5
1

2f UOMn50
aneinfU2

, (11)F̃K(f) 5 E2f

0
dK(f 2 fo)F̃(fo) dfo . (10)

where the an are real. Upon comparison with Eq. (9)
III. UNIFORM NORM KERNEL POLYNOMIALS

The choice of Gibbs damping factor, gm , determines the gm 5 OM2m

n50
anan1m . (12)

quality of kernel polynomial approximations. Kernels may
be characterized by their resolution, leakage, and posi-
tivity. Resolution is defined as the width of the peak around The fourth criterion, that the energy resolution should be
x P xo . Leakage is defined by how rapidly the kernel as good as possible, corresponds to minimizing the variance
approaches zero for large ux 2 xou. Positivity is defined by
whether approximations to DOS are positive and whether

Df2 ; Ef

2f
f2dK(f) df Q Ef

2f
(2 2 2 cos(f))dK(f) df

(13)
approximations to cumulative DOS are monotonic. The
importance of these properties depends on the scientific 5 2g0 2 2g1 .
application. For example, a common task in electronic
structure calculations is to estimate the Fermi energy,

As M increases dK(f) becomes more sharply peaked about
where the cumulative DOS equals the number of electrons.

f 5 0, and we can safely approximate f2 P 2 2 2 cos(f).
However, if the estimate for the cumulative DOS is not

Combining this with Eq. (12), the third criterion is equiva-
monotonic, there may be multiple solutions for the Fermi

lent to maximizing
energy. Without Gibbs damping, i.e., gm 5 1, the kernel
has unacceptable Gibbs oscillations at large ux 2 xou. If
instead gm is chosen to decrease smoothly with increasing Q 5 g1 2 lg0 5 OM21

n50
an an11 2 l OM

n50
an an , (14)

m with termination condition gM11 5 0, the resulting kernel
will peak at x 5 xo with a width proportional to 1/M and

where l is a Lagrange multiplier to enforce the third crite-will damp Gibbs oscillations at large ux 2 xou. Nevertheless,
rion on normalization, g0 5 1. The variational conditionthere remains considerable freedom to choose possible
dQ/dan 5 0 yieldsGibbs damping factors, which in turn leads to varying esti-

mates of the DOS and other quantities from knowledge
of M moments. Reference [1] displays kernels correspond- an12 2 2lan11 1 an 5 0, 0 # n # M 2 2, (15)
ing to several Gibbs damping factors in the literature on
polynomial approximations and Fourier analysis. with termination conditions

This section considers the optimal choice for the kernel
polynomial, K(x, xo). For applications to DOS and spectra a1 2 2la0 5 0,
we propose four reasonable criteria. First, the kernel

22laM 1 aM21 5 0.should be a polynomial of degree M, if only M Chebyshev
moments of the DOS are available. Second, the kernel

But these are just the recurrence relations for Chebyshevestimates of DOS and spectra should be strictly positive
polynomials of the second kind. Hence,as required by physics. Therefore, the kernel should be

positive for all x and xo . Third, the kernel should be nor-
malized so that the total number of states is preserved

an 5
Un(l)

ÏoM
n50 U2

n(l)
,

(16)
under polynomial approximation. As discussed above, this
condition is met by constraining g0 5 1. And, fourth, the
energy resolution should be the best achievable for M Un(l) 5

sin((n 1 1)fl)
sin(fl)

, cos(fl) 5 l.
Chebyshev moments subject to these other constraints.
That is, the kernel must have minimal width in ux 2 xou.
We derive a kernel which meets these criteria. Further, we The last line in Eq. (16) corresponds to Um11(l) 5 0, which

is equivalent to fl 5 fn/(M 1 2). The maximum of Q,demonstrate the results are analogous to the mathematical
definition of ‘‘uniform approximation by polynomials.’’ Eq. (14), is obtained for n 5 1. This choice satisfies our
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criteria for an optimal kernel to be used in the DOS and atypical and pessimistic. And, in practice, the modulus of
continuity of cumulative distributions is usually unknown.spectral applications of the KPM.

This kernel was originally derived by Jackson [9] in his For these reasons we prefer our derivation of the Jackson
kernel, which does not refer to continuity properties ofdevelopment of the theory of uniform approximation by

polynomials (see also, [10, 11]). For this reason, we shall the DOS or spectra.
Figure 1 displays various Gibbs damping factors, gm ,refer to it as the Jackson (J) kernel. We briefly outline the

essential elements of this theory as it relates to our prob- calculated for M 5 100. No Gibbs damping corresponds
to gnone

m 5 1. The uniform norm Gibbs damping factor islem. The uniform norm of a f-antiperiodic function C̃(f)
is defined by denoted by a g J

m (J for Jackson). We also display some of
the other Gibbs damping factors in the literature. Let
z ; m/(M 1 1). VW denotes a damping factor recentlyiC̃i 5 max

0#f#f
uC̃(f)u. (17)

introduced [18] to smooth boundary conditions for many-
body physics applications, but such arguments are equally

The best polynomial approximation of degree M, C̃K , is applicable to kernel polynomials. It is
defined as the one which minimizes iC̃ 2 C̃Ki. The modulus
of continuity of C̃(f) is defined by

gVW
m 5

1
2 F1 2 tanh S z 2 0.5

z(1 2 z)DG , (21)

g(d) 5 sup
all f1 ,f2 ;uf12f2 u#d

uC̃(f1) 2 C̃(f2)u. (18)

which has essential singularities at z 5 0, 1. L denotes
Lanczos’ proposal to damp Gibbs phenomena in truncatedNote that limdR0g(d) 5 0 for continuous functions. Then,
Fourier series using ‘‘sigma factors’’ sm , which are thefor kernel polynomial approximations, Eq. (10), one can
same asprove the relation

gLN

m 5 (sm)N 5 Ssin(fz)
fz DN

. (22)iC̃K 2 C̃i 5 g(d) S1 1
f

dÏ2
Ï1 2 g1D , (19)

A very readable motivation for sigma factors can be found
for some positive d. Hence, the approximation which mini- in Lanczos’ book [16] on Fourier analysis. In [1], L3 damp-
mizes this norm can be achieved by maximizing g1 under ing was touted as the best practical choice (although it was
the constraint g0 5 1. But this is the same variational labeled HO for ‘‘higher order’’ sigma factor). At the time,
condition as our Eq. (14). For our optimal kernel one can the authors of [1] were not aware of the theory of uni-
further prove form approximation by polynomials. Note that gLN

m and
g J

m are remarkably similar, although only the latter will
guarantee positivity of the kernel and the correspondingiC̃K 2 C̃i # g S 1

MDS1 1
f2

2 D , (20)
DOS and spectral estimates. W denotes the better of the
two choices recommended by Wang [2],

which relates the error of the uniform approximation by
gW

m 5 exp(2(z/0.8)8). (23)polynomials to the modulus of continuity. Provided C̃ is
continuous, the error goes to zero as the number of mo-
ments goes to infinity. If the modulus of continuity is It is far from optimal, and its practical performance is

comparatively poor.known, Eq. (20) provides error bounds on the uniform
approximation by polynomials. Figure 2 displays kernels corresponding to the various

Gibbs damping factors in Fig. 1. The vertical axis is 2dK(f)Although this theory provides the original derivation
for this kernel, we are applying it to finite systems. The given by Eq. (9). It is a symmetric function of f so only

f $ 0 need be shown. The normalization is chosen to makeDOS and spectra of such systems are sums of Dirac delta
functions, and they do not have a finite modulus of continu- the area under each curve equal 1. Kernels none, L and

W have comparatively better resolution near f 5 0, butity. Only the cumulative DOS and cumulative spectra sat-
isfy the conditions for the relevance of the theory of uni- they exhibit significant Gibbs oscillations extending to

large ufu. The deleterious practical consequence would beform approximation by polynomials; neither does Eq. (20)
provide a practical procedure for estimating systematic that information from one energy could ‘‘leak’’ into adjoin-

ing energies. This would be particularly severe for prob-errors bounds. By definition, the modulus of continuity of
cumulative distributions is dominated by the most highly lems involving a few states near to a large cluster of uninter-

esting states, as is often the case in many-body physics. Indegenerate states. The corresponding error bounds are
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FIG. 1. Gibbs damping factors. The various Gibbs damping factors gm discussed in Section III of the text. J denotes the uniform norm, or
Jackson, function. No Gibbs damping corresponds to gm 5 1.

contrast, kernels L3, VW, and J have comparatively poorer enforce positivity. MEM satisfies all the known moment
constraints within numerical accuracy, whereas the ratiosresolution at small ufu, but their Gibbs oscillations are

much more rapidly damped at large ufu. This is demon- of the moments of the KPM estimate to the known mo-
ments are given by the Gibbs damping factors. Therefore,strated on the right of the figure using a vertical scale

expanded by four orders of magnitude. The leakage for MEM can be expected to converge more rapidly than the
KPM with increasing M. Unfortunately finding the MEML3, VW, and J would be orders of magnitude smaller than

for none, L, and W. The uniform norm kernel J is the only solution requires a difficult convex nonlinear optimization,
whereas finding the KPM solution is trivial. And manipula-one which is nonnegative and, therefore, the only one to

produce monotonic cumulative distributions. Note that [1] tions of MEM estimates are more difficult because they
are nonlinear functions of the moments, whereas manipu-displays the Fejer kernel, corresponding to gF

m 5 1 2 z,
which is also nonnegative. However, leakage with the Fejer lations of KPM estimates are much simpler because they

are linear functions of the moments.kernel is severe, resulting in poor performance in practical
applications. Only the LN kernels average to zero at large
ufu, meeting Lanczos’ criterion of zero ‘‘bias.’’ And only IV. APPLICATION TO TIGHT BINDING
the VW kernel has zero variance, ef

2f f2dK(f) df 5 0, ELECTRONIC STRUCTURE
achieved at the expense of positivity of DOS estimates.

Which of these criteria are more important depends on The total energy, tight-binding method is gaining popu-
larity for atomistic simulations in materials science [24,the scientific application. We shall demonstrate in the next

section that positivity of the DOS, and the corresponding 25]. This semiempirical electronic structure approach is
based on a one-electron Hamiltonian with on-site energiesmontonicity of cumulative DOS, are critical for electronic

structure applications. An important argument in favor of and interatomic-distance-dependent hopping integrals.
The atom-centered basis set is chosen to be appropriatemaximum entropy methods (MEM) for moment problems

[22, 23] has been that they enforce such positivity. Intro- for the valence orbitals of the system under study. The
band (electronic) energy EB , defined as the sum of theduction of the Jackson kernel enables the KPM to also
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FIG. 2. Kernel polynomials. Various dK(f) corresponding to the Gibbs damping factors in Fig. 1. The kernels are symmetric functions of f, so
that only f $ 0 is shown. The right side expands the vertical scale by four orders of magnitude expanded to exhibit the large ufu behavior.

energies of all occupied states up to the Fermi energy, laxed vacancy formation energy (EV), defined as EV ;
E215

B 2 (SsAaGh)E 216
B , which has been shown [20] to provide ais augmented by a short-ranged pair potential. The com-

putational bottleneck in tight-binding calculations is the much more stringent test of moment-based approximations
than the cohesive energy.diagonalization of H, requiring O(N 3) work. There has

been much interest recently in approximations that im- Let D(«) be the DOS, C(«) 5 e«

2y D(«9) d«9 be the
cumulative DOS, and let E(«) 5 e«

2y «9D(«9) d«9 be theprove on this scaling without undue loss of accuracy. In
this section we test an O(N 2) implementation of the cumulative energy. The Fermi energy «F is defined by the

condition that the number of occupied states correspondsKPM for this problem.
to two electrons per atom per spin, C(«F) 5 2Natom . TheSilicon is chosen as a working example, and we employ
band energy is then defined as EB ; E(«F). The Hamilto-the tight-binding parameters of Goodwin et al. [19]. The
nian matrices considered here are sufficiently small thatbasis set consists of an s function and the three Cartesian
they may be exactly diagonalized by O(N 3) methods forp functions on each atom. For the present calculations,
comparison.only the electronic energy is considered and the lattice is

Let us presume scaling factors a and b have been chosenassumed to be fixed. To compute the DOS and cohesive
so that all the eigenstates of the Hamiltonian have energiesenergy of a system approximating bulk Si, a Hamiltonian
«n 5 axn 1 b with 21 # xn # 11. The scaled DOS,matrix is constructed for a block of 216 Si atoms arranged
cumulative DOS, and cumulative energy arein the diamond structure. This block is placed in a cubic

box (supercell) with periodic boundary conditions. (Only
D(x) ; ON

n51
d(x 2 xn) 5

D̃(f)
sin(f)

,the k 5 0(G) point in the Brillouin zone is needed, since
the 216 atom supercell system is equivalent to a nearly
converged sample of k-points for the primitive diamond- C(x) ; Ex

21
D(x9) dx9 5 C̃(f) 5 Ef

f
D̃(f9) df9, (24)

structure cell.) We also consider a 215-atom system, in
which one atom has been removed while the remaining

E(x) ; Ex

21
x9D(x9) dx9 5 Ẽ(f) 5 Ef

f
cos(f9)D̃(f9) df9,atoms are held fixed. This allows computation of the unre-
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respectively. Define cm(f) ; cos(mf)/f and sm(f) ; using Eq. (10). We refer to this as the integrate, then approx-
imate option (IA).sin(mf)/fm. Then expansions for these quantities in exact

Chebyshev moments are Both IA and AI options use the same DOS,

D̃K(f) 5
e0g0

f
1 2 ON

m51
emgmcm(f). (28)D̃(f) 5

e0

f
1 2 Oy

m51
emcm(f),

But the two choices yield different approximations to theC̃(f) 5 e0 S1 2
f

fD2 2 Oy
m51

emsm(f), (25)
cumulative DOS and to the cumulative energy. The IA
expressions are

Ẽ(f) 5 e1 S1 2
f

fD2 Oy
m51

(em21 1 em11)sm(f).

C̃IA(f) 5 2 OM
m51

(eo 2 em)gmsm(f),

Ẽ(f) may be continued to 0 # f # 2f using Ẽ(2f 2
f) 5 2Ẽ(f). ẼIA(f) 5 2e1 OM

m51
gmsm(f) 2 OM

m50
emgm11sm11(f) (29)

Exact Chebyshev moments may be generated using the
polynomial recurrence relations and matrix-vector-multi-
plications (MVMs), 2 OM

m52
emgm21sm21(f).

Tm(X)uil 5 2XTm21(X)uil 2 Tm22(X)uil, (26)
The AI expressions are

where uil are basis states. Then moments are constructed
using C̃AI(f) 5 e0g0 S1 2

f

fD2 2 OM
m51

emgmsm(f),

e2m 5 ON
i51

(2kiuTm(X)Tm(X)uil 2 1,

(27)
ẼAI(f) 5 g1e1 S1 2

f

fD2 OM
m50

emgmsm11(f) (30)

e2m21 5 ON
i51

(2kiuTm(X)Tm21(X)uil 2 kiuT1(X)uil). 2 OM
m52

emgmsm21(f).

At any finite M, the DOS will be strictly positive andGenerating M moments requires M/2 MVMs. Provided
the Hamiltonian is sparse, this procedure requires compu- the cumulative DOS will be strictly monotonic only if the

kernel polynomial is strictly positive, regardless of thetational work scaling like N 2M and memory scaling like
N. Reference [1] discusses a stochastic generalization of choice between the IA and AI options. Both choices con-

verge toward the exact answer as the number of momentsthis procedure using random Gaussian vectors which re-
quires computational work scaling like NM and which is increased, so the fractional difference between them can

be made arbitrarily small using enough moments. How-yields moments subject to statistical errors. Other possible
linear-scaling KPMs will be discussed in a forthcoming ever, the goal should be to achieve the highest possible

precision from the fewest possible moments. We shall dem-paper. The treatment of systematic errors discussed in the
present paper applies as well to such linear scaling onstrate empirically that the IA option has a much faster

asymptotic convergence rate with increasing number ofmethods.
Practical calculations will yield only a finite number of moments than the AI option. Equivalently, IA requires

many fewer moments to achieve a desired accuracy thanmoments. At issue is how best to truncate the moment
expansions, Eq. (25). There are two obvious choices which does AI. Indeed, these two options may be related using

integration by parts such that ẼAI 5 ẼIA 1 R, where thediffer in the order of mathematical operations. One might
take the kernel polynomial approximation to the DOS DK residuals satisfy uRu Y M22 at large M.

We now proceed to the numerical results. Figure 3 showsusing Eq. (6), and then calculate the cumulative energy
from E(«) P e«

2y «9DK(«9) d«9. We refer to this as the a portion of the DOS for the 216 atom supercell for various
kernel polynomials. Only the Jackson and Fejer kernelsapproximate, then integrate option (AI). Alternatively, one

might calculate an exact moment expansion for the cumula- are guaranteed to yield positive DOS estimates. Therefore,
only they yield monotonic cumulative DOS and uniquetive DOS and cumulative energy, e.g., E(«) 5 e«

2y «9D(«9)
d«9, and then take its kernel polynomial approximation estimates for the Fermi energy. The Jackson kernel is pre-
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FIG. 3. KPM DOS. A portion of the kernel polynomial estimates of the DOS of the 216-atom Si supercell calculated for 200 Chebyshev moments
for the various kernel polynomials displayed in Fig. 2.

ferred because of its much smaller leakage and better reso- 1.0 eV for M $ 40. Recall that the polynomial recurrence
procedure requires only M/2 MVMs to yield M moments.lution. The L3 kernel, first recommended in [1], produces

results which are quite similar to the Jackson kernel, but So EIA
V converges after only 20 MVMs. The AI option

converges more slowly than the IA option, with the differ-the DOS is still not strictly positive.
Figure 4 demonstrates how the Fermi energy and ence between EAI

V and the exact EV varying as M22 at large
M as predicted by theory. This figure makes clear that thethe band energy are determined. Shown are the DOS,

cumulative DOS, and cumulative energy for the 216 IA option is preferable to the AI option for the vacancy
formation energy calculation. However, for other calcula-atom supercell obtained using the Jackson kernel, 200

moments, and the IA option. The Fermi energy is the tions the KPM does not yet provide criteria for which delta
function to approximate by a kernel polynomial, leadingpoint where the cumulative DOS equals the number of

electrons. Then, the band energy is the cumulative energy to different KPM estimates from the same moment data.
The resolution of this ambiguity is a topic for future re-evaluated at the Fermi energy. For comparison, results

from O(N 3) exact diagonalization are shown as vertical search.
The values for EIA

V agree well with maximum entropylines. They are positioned at eigenenergies of the Hamil-
tonian and their heights are equal to 203 their degen- (MEM) results calculated for M # 20 [20]. However, the

cohesive energy converges more slowly for KPM than foreracy.
Figure 5 compares the performance of the IA option, MEM; i.e., EIA

B converges to within 0.1 eV/atom of exact
tight binding by M 5 30 and asymptotes to within 0.1 eVEq. (29), to the AI option, Eq. (30). Shown on the left is

the band energy, EB , for the 216 atom supercell using a total at M $ 150, while MEM requires only M $ 10 to
converge within 0.1 eV/atom. The faster convergence oflinear horizontal scale for M. Shown on the right is the

vacancy formation energy, EV , displayed using a logarith- MEM relative to KPM is offset by its much greater compu-
tational complexity. A detailed comparison of KPM andmic horizontal scale for M. The vertical scale is energy in

electron volts. Also shown is the exact result obtained by MEM will be presented elsewhere.
Finally, Fig. 6 compares the performance of various ker-diagonalization of the Hamiltonian, an O(N 3) process.

EIA
V has converged on the exact tight binding EV to within nels for vacancy formation energy calculations. The IA
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FIG. 4. Calculating the band energy. The solid line is the KPM DOS for the Si 216-atom supercell calculated with the Jackson kernel polynomial
and 200 moments (100 MVMs). For comparison, the vertical lines depict exact diagonalization results. The lines are positioned at eigenenergies of
the Hamiltonian and their height equals 203 their degeneracy. The dashed line is the cumulative DOS. The Fermi energy EF is determined by
CK(EF) 5 2Natom . The band energy is the cumulative energy at the Fermi energy, EB 5 EK(EF).

option is used throughout. The kernels for none, L, and
5 ON

n51
ukC0uOunlu2d(g 1 «0 2 «n). (32)L3 Gibbs damping are not positive, resulting in possible

multiple solutions for the Fermi energy found by a bi-
section procedure. This ambiguity is reflected in the scatter

Here O is the matrix representation of an operator, e.g.,of results for EV as a function of the number of moments.
the spin operator if one wants to calculate the dynamicalOnly the Jackson kernel is positive definite, guaranteeing
magnetic susceptibility. Also, uC0l and «0 are the grounda unique solution for the Fermi energy and the most rapid

convergence for EV . The performance of the L3 kernel state wave function and the ground state energy, and unl
is comparable. and «n define the excited states of the Hamiltonian H. We

shall argue that the KPM provides a more reliable method
V. APPLICATION TO DYNAMICAL PROPERTIES OF to calculate uniformly smoothed approximations to spec-

SPIN SYSTEMS tral functions than the LRM.
The KPM calculation of a spectral function proceeds asThe most commonly used procedures for calculating

follows. Bounds on the energy spectrum and the groundproperties of large Hamiltonians are Lanczos recursion
state wave function are found using the LRM. The energiesmethods (LRM). They require the same optimized MVM
and Hamiltonian are rescaled as before, i.e., H R X andalgorithm as the KPM. The LRM is the optimal way to
g R x, so that all energies lie between [21, 11] and 0 #calculate the ground state energy and wave functions, as
x # 2. The delta function in Eq. (32) is approximated bywell as static correlations as a function of the parameters
a kernel polynomialof the Hamiltonian. To obtain more physical insight into

the properties of the ground state, it is often desirable to
calculate dynamical properties such as spectral functions, AO

K(x) P kCouO†K(x 2 1, X)OuCol,
(33)

AO(g) 5
1
f

lim
dR01

Im HkC0uO† 1
g 2 H 2 id

OuC0lj , (31) 5
1

fÏ1 2 (x 2 1)2 FgoeO
0 1 2 OM

m51
gmTm(x 2 1)eO

mG .
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FIG. 5. Calculating the vacancy formation energy. The band energy, EB , of the 216-atom supercell is shown on the left and the vacancy formation
energy, EV , is shown on the right as a function of the number of moments M. IA corresponds to the integrate, then approximate option described
in Section IV. AI corresponds to the alternative approximate, then integrate option. More rapid convergence with increasing numbers of moments
is obtained for the IA option.

Here the moments
AO

L(g) 5
kC0uO†OuC0l

g 2 ao 2
b2

1

g 2 a1 2
b2

2

g 2 ? ? ?

,
(36)

eO
m 5 kCouO†Tm(X)OuCol. (34)

A vector OuCol is calculated. Then vectors Tm(X)OuCol
are generated using the Chebyshev recurrence relations. The coefficients ai , bi are obtained using the recursion
Moments, Eq. (34), are again calculated most efficiently
using relations for combining Chebyshev polynomials fi11 5 Hfi 2 aifi 2 bifi21 , (37)
analogous to Eq. (27), so that M moments requires only
M/2 1 1 MVMs. The resulting KPM spectral function with
is the convolution of a kernel polynomial (or resolution
function) with the true spectral function, i.e.,

ai 5 fT
i Hfi/ri , b2

i11 5 fT
i11Hfi , ri 5 fT

i fi , (38)

AO
K(x) 5 E2

0
K(x 2 1, x9 2 1)AO(x9) dx9, 0 # x # 2. (35) and the initial conditions

f0 5 OuC0l, b0 5 0. (39)The resolution is uniform in f 5 arc cos(x 2 1), and the
width is proportional to M21. With increasing M, AO

K(x)
converges in a controlled manner to AO(x). We will com- After M recursions, AO

L (g) consists of M delta function
peaks which is difficult to display. In [12] a finite (small)pare KPM spectral functions to those obtained by the

Lanczos recursion method (LRM). We use only the Jack- d was introduced in Eq. (31) to obtain a smooth spectral
function. In [13, 14] this smoothing method was furtherson kernel for these comparisons.

The original LRM [12] for spectral functions yields a refined in order to mimic an infinite system. The number
of recursions in practical continued fraction applicationscontinued fraction expansion,
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FIG. 6. The effect of Gibbs damping factors on EV . The panels display scatter plots of the vacancy formation energy, EV , as a function of the
number of moments M on a logarithmic scale. Calculations used the IA option and the various kernels indicated. The EV for nonpositive kernel
polynomials is bouncing about, because there are multiple possible solutions for the Fermi energy. The Jackson kernel enforces positivity, so that
there is a unique solution for the Fermi energy and rapid convergence. The L3 kernel is comparable to the Jackson kernel for this application.

is limited to less than 100 by the high accuracy required finite precision arithmetic a loss of orthogonality of the
Lanczos vectors results in a requirement for M @ N. If wefor the coefficients.

A further refinement of LRM for spectral functions, the denote the eigenvectors of TM by uf̃il, i.e., TMuf̃il 5 «̃iuf̃il,
then ufil 5 VTuf̃il and the amplitudes kfiuOuC0l in Eq. (40)‘‘spectral decoding method,’’ was presented in [15]. They

noticed that AO(g) can be approximated by are given by the first components of the eigenvectors of TM:

kfiuOuC0l 5 (uf̃il)1 . (42)AO(g) P OM
i50

ukfiuOuC0lu2d(g 1 «0 2 «̃i), (40)

The spectral decoding method eliminates the need to
where «̃i and ufil are the eigenvalues and eigenstates of H evaluate continued fraction coefficients. In the following,
in the restricted basis set hfi , i 5 1, ..., Mj generated by we use only results from the spectral decoding method
the recursion Eq. (37). In this basis set H is a tridiagonal to compare the LRM with the KPM, but our conclusions
matrix, TM , because the transformation matrix, shall also apply to other LRM for spectral functions.

In both the KPM and LRM the computer work intensive
V 5 (f0 , f1 , ..., fM), (41) steps are the MVMs. The LRM needs MVMs for the

Lanczos recursion, and the KPM needs MVMs for the
Chebyshev recursion. Thus both methods can benefit fromis an orthogonal N 3 (M 1 1) matrix and TM 5 VTHV.

Eigenvalues of the Hamiltonian appear as eigenvalues optimization of the same MVM algorithm.
But the LRM and KPM differ in their numerical stabilityof TM with increasing M, a behavior termed the Lanczos

phenomenon. Using exact arithmetic one could obtain all in the presence of numerical roundoff error. The Cheby-
shev recursion is numerically stable with no generation ofN eigenvalues of the Hamiltonian by M 5 N MVMs. For
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FIG. 7. Longitudinal dynamical magnetic susceptibility. Cumulative spectral functions Gzz from the KPM (solid line) and the LRM (diamonds)
for the XXZ model. The spectral function Azz from the KPM is also shown. All curves correspond to 1000 matrix-on-vector multiplications. The
anisotropy strength is D 5 0.6 and the disorder strength is s 5 0.5.

spurious structure even at extremely large M, whereas the distribution with width s. D controls the anisotropy. With-
Lanczos recursion is numerically unstable. Note that the out random exchange the model can be solved exactly
recursion Eq. (37) is very similar to the usual Lanczos using the Bethe ansatz. The Hamiltonian has recently been
recursion [21]. The important difference is that the vectors of interest, because of the appearance of a random singlet
fi in Eq. (37) are not normalized. The normalization coeffi- phase [26]. We shall consider the longitudinal and the
cients ri in Eq. (38) exponentially increase or decrease transverse dynamical spin susceptibilities, Azz and A12. In
with recursion index i resulting in an eventual overflow or the case of no disorder they consist of a series of well
underflow at large M. (In the example below, we reached separated, coherent peaks. With disorder one obtains many
r1000 5 3.3 3 102247.) Moreover, the Lanczos phenomenon more peaks, which may be closely spaced. Since our goal
results in a loss of orthogonality and a rapid accumulation is to compare methods of calculation rather than to learn
of roundoff error. This can be overcome only by repeated new physics, we do not average over the realizations of
reorthogonalization or by an elaborate error analysis, as disorder. We consider just one realization of the Ji’s. We
we shall discuss further below. present results for a nontrivial system size of N 5 22 sites,

As our example to compare various methods for calcula- which results in a Hilbert space dimension of 705432 in
tion spectral functions, we consider the one-dimensional the Sz

total 5 ON

i
Sz

i 5 0 subspace. As parameters we chose
XXZ-model with exchange randomness described by the anisotropy parameter D 5 20.6 and a disorder strength
Hamiltonian s 5 0.5.

For finite systems the true spectral functions will consist
of a sum of delta functions with amplitudes ukC0uOunlu2,HXXZ 5 ON

i
(1 1 Ji)(Sx

i Sx
i11 1 Sy

i Sy
i11) 1 DSz

i Sz
i11 . (43)

which are difficult to display graphically. In a practical
calculation, the number of recursions M may be orders of
magnitude smaller than the number of states. A LanczosThe sum goes over N sites with periodic boundary condi-

tions. The random couplings Ji are drawn from a Gaussian estimate for the spectral density, AO
L(g), will consist of M
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FIG. 8. Transverse dynamical magnetic susceptibility. Cumulative spectral functions G12 from the KPM (solid line) and the LRM (diamonds)
for the XXZ model. The spectral function A12 from the KPM is also shown. All curves correspond to 1000 matrix-on-vector multiplications. The
anisotropy strength is D 5 0.0 and the disorder strength is s 5 0.0.

delta-function peaks. A kernel polynomial estimate for the of the results of the KPM (the solid lines). The position
spectral density, AO

K(g), will be a naturally smoothed ver- of the diamonds corresponds to the eigenvalues «̃i from
sion of AO(g). In order to avoid ad hoc smoothing of Eq. (40). For one given peak (e.g., the first one in Fig. 8)
AO

L(g), we compare the LRM and KPM on the basis of there may be more than one «̃i , whose weights then add
their cumulative spectral functions, up to the true GO(g). To illustrate the behaviour of the

LRM as a function of the number of recursion steps M,
we show in Fig. 9 an enlarged portion of a spectral density.GO(g) 5 Eg

2y
dg9AO(g9). (44)

The eigenvalues move about as M is increased. There are
also spurious eigenvalues which disappear as the iteration

GO(g) is a superposition of step functions, with steps at proceeds. Fortunately, spurious eigenvalues appear to have
the poles of the spectral function and the step-height equal a small weight and little influence on the cumulative spec-
to the amplitude of the delta function peaks. A plot of

tral function.
GO(g), instead of AO(g), displays information about both

In a practical Lanczos iteration, one can categorize thethe position of the poles and their amplitudes. In addition
eigenvalues of TM by their behavior as a function of M:we shall show AO

K(g).
We compare GO

L (g) and GO
K(g) as a function of M.

• Eigenvalues may correspond to one peak in the trueGO
L (g) is a superposition of step functions at the positions

spectral function, even though they may be degenerate.of the eigenvalues of TM . GO
K(g) is a convolution of a

(This degeneracy is not exact but within numerical accu-kernel function with the true GO(g). As a reference we
racy, because a symmetric tridiagonal matrix only has sim-use results from 1000 MVMs, for which LRM and KPM
ple eigenvalues or it is block diagonal). Such eigenvaluesgive practically identical spectra for the parameters chosen.
are labeled as converged. Multiple copies of the same ei-Figure 7 shows the results for the disordered case and
genvalue are often labeled clones.D 5 0.6, and Fig. 8 shows the results for the ordered case.

The results from the LRM (the diamonds) lie right on top • Eigenvalues may appear and disappear as the iteration
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FIG. 9. The Lanczos phenomenon. The right side shows the cumulative function G12 for the XXZ model as a function of recursion steps M.
The parameter values are the same as in Fig. 7. Shown is an enlarged section. As a guide to the eye A12 1 0.3 from the KPM is drawn to indicate
the position of poles. The left side shows the full scale for 800 recursions.

proceeds. They are labelled as spurious and should not be mates with an unknown relation to the true spectrum.
Smoothing of spurious eigenvalues is even more absurd,used. Spurious eigenvalues are often labeled ghosts.
when there exist procedures to identify and remove them.• Eigenvalues may change slowly as the iteration pro-
The amount of smoothing used in such LRM methods is adceeds. They are labeled as approximations to real eigenval-
hoc, and there is no reason to expect the optimal smoothingues. The rate of convergence of approximate eigenvalues
to be uniform across the entire spectrum. In contrast, in thedepends on their position in the spectrum. Those which
KPM smoothing is uniquely determined by the number oflie on the edges of the true eigenvalue spectrum and which
Chebyshev recursions, and it is naturally uniform.are well separated converge faster than those associated

In summary, the LRM and the KPM give qualitativelywith closely spaced clusters of true eigenvalues.
similar results for the cumulative function GO(g). How-

The convergence of one of the «̃i causes the loss of orthogo- ever, the KPM provides a more direct route to obtaining
nality of the vectors fi in the presence of numerical roundoff a spectral function with a uniform resolution. Natural uni-
error. For small enough matrices it is possible to reorthogo- form smoothing is built into the KPM, and no spurious
nalize the vectors. For large problems Cullum and Wil- structure due to numerical instability is generated even at
loughby [21] have proposed a procedure that does the extremely large M. In contrast, the relation of the LRM to
labeling as described above and produces error bars. spectral functions is more complicated due to the Lanczos

Inviewof thiswell-establishedbehaviorof LRM,thepop- phenomena. Uniform smoothing of the LRM poles is mis-
ular procedure to yield a smooth spectral estimate from the leading because of the nonuniform convergence rates and
LRM (i.e., uniformly broaden the peaks defined by eigen- spurious peaks as a function of M. The number of re-
values of TM by introducing a nonzero width d in Eq. (31)) cursions in the LRM is limited by an eventual over(under)-
appears to make little sense. Smoothing of converged eigen- flow of the ri in Eq. (38). If the scientific interest centers
values, which appear first for well-separated or band edge on only a few well separated peaks or band edges in a
states, throws away valid information from the LRM. spectral function, the LRM might be cheaper in terms of
Smoothing of approximate eigenvalues, which generally MVMs. If the number of poles becomes large or they

become closely spaced, the KPM is more reliable. We findcorrespond to clusters of true states, yields spectral esti-
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FIG. 10. Fermi projection operators. The left side shows kernel polynomial approximations to step functions and Fermi projection operators for
various kernels on a linear vertical scale. The right-hand side shows the envelope function of the polynomial approximation to step functions on a
logarithmic vertical scale and an expanded linear f scale. Calculations are shown for 100 moments. The L3 kernel and VW kernels project unoccupied
states to zero by at least eight orders of magnitude, limited only by machine precision. The Jackson kernel provides the next most effective Fermi
projection operator, projecting to zero by about six orders of magnitude. Other kernels provide even less effective projection operators.

KPM spectral functions to be easier to implement and
ucl 5 ON

n51
bnunl, PFucl 5 ON

n51
Q(EF 2 «n)bnunl, (45)interpret than the LRM.

VI. APPLICATION TO FERMI PROJECTION
OPERATORS where Q is a Heaviside step function. That is, PF is the

operator equivalent of a step function, PF 5 Q(EF 2 H).
Although the Jackson kernel has the best performance Ideal Fermi projection operators would require an infinite

for spectra and DOS, other kernels may be preferable for number of MVMs to construct, but polynomial approxima-
other scientific applications. Indeed, as shown in [1], the tions to them are feasible. For example, [5, 6] construct
no Gibbs damping choice gm 5 1 is best for statistical projection operators using polynomial approximations to
mechanics calculations in which partition functions may finite temperature Fermi–Dirac functions with tempera-
be expanded in Chebyshev moments and modified Bessel ture a free tuning parameter. However, in our context, a
functions. In this section, we demonstrate that the Lanczos step function is the integral of a Dirac delta function,
kernel and its variants can be more effective than the d(x 2 xo). Therefore, a polynomial approximation to a
Jackson kernel in constructing polynomial approximations step function can be constructed from the integral of the
to Heaviside projection operators. Such operators are used polynomial approximation to a delta function, the kernel
in electronic structure calculations, for example, to project K(x, xo). And a polynomial approximation to a projection
unoccupied states above the Fermi energy to zero, in which operator can be constructed from the integral of the opera-
case we label them Fermi projection operators. tor kernel, K(x, X).

An ideal Fermi projection operator PF is defined by its Specifically, this corresponds to the choice F̃(f) 5
action on a random vector ucl. Consider the expansion in Q(f 2 fF) in Eq. (10), where fF is defined by «F 5

a cos(fF) 1 b. Theneigenstates unl of H,
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convergence in electronic structure applications. The Jack-
QK(f, fF) 5 1 2

fF

f
2 2 OM

m51
gmsm(fF) cos(mf). (46) son kernel also provides the highest resolution uniformly

smoothed estimates of dynamical spectral functions. Rela-
tive to other methods for DOS and spectra such as LanczosSimilarly, the kernel polynomial approximation to a Fermi
recursion and maximum entropy, the KPM is much easierprojection operator is
to implement and manipulate with small risk of numerical
instability. No reorthogonalization of vectors or nonlinear
optimization is required. The KPM requires the same opti-PF

K 5 S1 2
fF

f D 1 2 2 OM
m51

gmsm(fF)Tm(X). (47)
mized matrix–vector multiplication algorithm used in
Lanczos recursion methods. We believe the KPM will
prove to be a useful complement to the arsenal of methodsIn practice, this operator is applied by using the Chebyshev
for large matrix computations in condensed matter physics.recurrence relations to generate the Tm(X)ucl.
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ACKNOWLEDGMENTSFermi projection operators on the choice of Gibbs damping

factor. It plots Eq. (46) for the same Gibbs damping factors
This research was supported in part by the Office of Basic Energyas in Figs. 1 and 2. The left side shows QK(f, fF) for Sciences, Division of Materials Research, of the U.S. Department of

fF 5 2.0 and M 5 100. What is important for the applica- Energy.
tions of Fermi projection operators is how closely this
function approaches zero for f # fF . These functions are REFERENCES
oscillatory due to the Gibbs phenomenon, so we display
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